一、近五年的教学情况及成果
1.讲授的主要课程
(1)“数值分析”,学科基础课,4学时/周.
(2)“运筹学”,专业课,4学时/周.
2.承担的实践性教学任务
(1)指导了7届本科生毕业论文,共43人。获湖北省优秀学士学位论文3人次。
3.主持的教学研究课题
无
4.发表的教学研究论文
(1)信息与计算科学专业运筹学教学改革研究[J].教育教学论坛,2013,33:91-92.
5.获得的教学表彰/奖励
(1)2009-2010学年教学质量优秀奖,yL23411永利官网登录
(2)2013-2014学年教学质量优秀奖,yL23411永利官网登录
二、近几年的学术研究
1.承担的主要科研项目
(1)几类三层规划问题的算法设计与应用研究(2019CFA088),湖北省杰出青年基金项目,2019.01-2021.12,主持人
(2)半向量二层规划问题的算法设计与应用研究(11771058),国家自然科学基金面上项目,2018.01~2021.12,主持人
(3)二层多目标规划问题的算法设计及应用研究(11201039),国家自然科学青年基金项目,2013.01~2015.12,主持人
(4)二层规划问题的算法设计及应用研究(10926168),国家自然科学基金项目(天元基金),2010.01~2010.12,主持人
(5)几类二层多目标规划问题的算法设计,湖北省教育厅优秀中青年项目,2012.03~2013.12,主持人
(6)新区油气资源评价参数研究—以塔里木盆地阿瓦提凹陷及周缘地区为例,横向项目,2009.07~2010.04,主持人
(7)油砂储层内泥质薄夹层自动识别与解释系统研发(2019H08002),横向项目,2017.04-2018.04,主持人
2.发表的主要学术论文
[1] Yibing Lv, Jianlin Jiang. A relaxation solving approach for the linear trilevel programming problem, Computational and Applied Mathematics, 2021, 40, 226.https://doi.org/10.1007/s40314-021-01617-0. (SCI)
[2] Yibing Lv, Tiesong Hu, Jianlin Jiang. A bounding approach for the optimistic optimal solution of a class of semivectorial bilevel programming problem, Journal of Nonlinear and Convex Analysis, 2020, 21(4):973-987. (SCI)
[3] Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty method-based equilibrium point approach for solving the linear bilevel multiobjective programming problem, Discrete and Continuous Dynamical Systems - Series S, 2020, 13(6):1743-1755. (SCI)
[4] Yibing Lv, Zhongping Wan. Linear Bilevel Multiobjective Optimization Problem: Penalty Approach. Journal of Industrial and Management Optimization, 2019, 15(3):1213-1223. (SCI)
[5] Yibing Lv, Zhongping Wan. A sloving method based on neural network for a class of multi-leader-follower games. Neural Computing and Applications, 2018, 29(2):1475-1483.(SCI)
[6] Yibing Lv, Jiawei Chen. A discretization iteration approach for solving a class of semivectorial bilevel programming problem. Journal of Nonlinear Sciences and Applications, 2016, 9:2888-2899.(SCI)
[7] 吕一兵,万仲平.一类半向量二层规划问题的精确罚函数方法.系统科学与数学. 2016, 36(6):800-809.
[8] 吴慧,吕一兵*.一类非线性二层多目标规划问题的主要目标法.西南大学学报(自然科学版), 2016, 38(1):109-115.(通讯作者)
[9] Yibing Lv. A solution method for solving the optimistic linear semivectorial bilevel programming problem[J]. Journal of Inequalities and Applications, 2015, 2015:258.(SCI)
[10] Yibing Lv.An exact penalty function approach for solving the linear bilevel multiobjective programming problem[J]. Filomat,2015, 29(4):773-779.(SCI)
[11] 吕一兵.下层为凸标量优化的二层多目标规划问题的光滑化方法[J].系统科学与数学,2014,34(5):513-520.
[12] 吕一兵.初始排污权分配及定价的双层多目标规划模型[J].运筹与管理,2014,23(6):17-22.
[13] 吕一兵.排污权市场交易的双层规划模型[J].系统工程理论与实践,2014,34(2):343-348.(EI)
[14] 吕一兵.一类弱线性二层多目标规划的罚函数方法[J].数学杂志,2013,33(3):465-472.
[15] Yibing Lv. Neural network approach for semivectorial bilevel programming problem[C]. 2012 4thInternational Conference on Intelligent Human-Machine Systems and Cybernetics, 2012,2:30-33.(EI)
[16] 吕一兵.一种求解线性二层规划的割平面方法[J].数学的实践与认识,2012, 42(21):116-122.
[17] 吕一兵.基于BP神经网络的石油运聚系数预测模型[J].新疆石油地质,2011, 32(6):653-655.
[18] Y.B.Lv. An exact penalty function method for solving a class of nonlinear bilevel programs[J]. Journal of Applied Mathematics and Informatics, 2011, 29:1533-1539.
[19] 吕一兵,万仲平,胡铁松.水资源优化配置的双层多目标规划模型[J].武汉大学学报(工学版),2011, 44(1):53-57.
[20] Y.B.Lv, Z.Chen, Z.Wan. A neural network approach for solving mathematical programs with equilibrium constraints[J]. Expert Systems with Applications, 2011,38:231-234.(SCI)
[21] Y.B.Lv, Z.Chen, Z.Wan. A neural network approach for solving convex quadratic bilevel programming problem[J]. Journal of Computational and Applied Mathematics, 2010, 234:505-511.(SCI)
[22] Y.B.Lv, Z.P.Wan. A penalty method based on BLP for solving inverse optimal value problem. Applied Mathematics Letters, 2010,23:170-175.(SCI)
[23] Y.B.Lv, Z.Chen, Z.P.Wan. An application of bilevel programming in inverse optimal value problem. Dynamics of Continuous, Discrete and Impulsive Systems, 2009, 16:373-382.
[24] 吕一兵,万仲平,胡铁松,陈忠.水资源优化配置的二层规划模型研究.系统工程理论与实践, 2009, 29(6):115-120.(EI)
[25] Y.B.Lv, et al. A Global Optimization Method for SolvingLinear Bilevel Programming Problem. Lecture Notes in Decision Making Sciences, 2009, 12(A):249-254. (ISTP)
[26] 吕一兵,陈忠,万仲平.非线性-线性二层规划问题的罚函数方法.系统科学与数学, 2009,29(5):630-636.
[27] Y.B.Lv, T.S.Hu, Z.P.Wan. A penalty function method for solving inverse optimal value problem. Journal of Computational and Applied Mathematics, 2008, 220:175-180.(SCI)
[28] Y.B.Lv, T.S.Hu, G.Wang, Z.P.Wan. A neural network approach for solving nonlinear bilevel programming problem. Computers & Mathematics with Applications, 2008, 55:2823-2829.(SCI)
[29] Y.B.Lv, T.S.Hu, G.Wang, Z.P.Wan. A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming. Applied Mathematics and Computation, 2007, 188: 808–813.(SCI)
[30] Y.B.Lv, T.S.Hu, Z.P.Wan. A penalty function method for solving weak price control problem. Applied Mathematics and Computation, 2007, 186:1520-1525.(SCI)
[31] 吕一兵,胡铁松,万仲平,王广民.关于线性二层规划最优解定义的几点注解.运筹学学报,2007, 11(4):52-58.
[32] 吕一兵,万仲平,胡铁松,王广民.关于线性二层规划分支定界方法的探讨.运筹与管理, 2006, 15(5):24-28.
[33] 吕一兵,万仲平,贾世会,肖新平. 一种求解线性二层规划的修正Frank-Wolfe方法.武汉理工大学学报(交通科学与工程版), 2005, 29(6): 993-996.(EI)
[34] 吕一兵,彭慧明等.用马氏链方法预测塔里木油田近期石油年产量趋势.西安石油大学学报(自然科学版), 2004, 19(4):77-79.(EI)
3.获得的学术研究表彰/奖励
(1)A penalty function method for solving inverse optimal value problem,湖北省第14届自然科学优秀论文三等奖,湖北省科学技术协会,2012年,第一完成人
(2)二层规划的理论、方法与应用,2019年湖北省自然科学二等奖,湖北省科技厅,2019年,第一完成人